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Summary

Gupta, Singh and Lai [1] have studied the bias and variance of the sample correl
ation coefficient ;• based on a simple random sample from a finite population
They obtained asymptotic expressions for bias and variance of r in terms of sums
of powers of the two variables and sums of their products. In this paper asymp
totic bias and asymptotic variance of r are obtained in simple expressions involv
ing bivanate moments of the finite population. A class of estimators of the
population correlation coefficient is suggested when information about the popu
lation mean and population variance ofone ofthe variables isavailable.
Keywords : Auxiliary information; Correlation coefficient; Finite population-

Simplerandom sampling. '

Introduction

The correlation coefficient p for a finite population of N units with
variate values {xi, yi), i = \, . . . , N is defined by

P = SzvKS:, • S„)

where

(l.I)

Szy = (N- 1)-1 S {xi - X)(yi - Y),
i-l

si =iN- 1)-'.2^ (xi - J)^ Si =(N ~ (7i - F)«

1

r
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and X and Y denote the population means of the variates x and y
respectively.

Based on a simple random sample of size n, (xi, yi), i = 1, the
conventional estimator of p is the corresponding sample correlation
coefficient

f = smtlisx • sv) (1.2)

where

sxy = in - l)-i S (xi - x){yi - y),
i=\

"l = (« - ly S (xi - x)\ si = (n - 1)-1 S (yi -
1=1 /=i

_ n n
X = rr^ S Xi and V= n~^ S y, •

1=1 t=i

Recently Gupta, Singh and Lai [1] studied the sample correlation
coefficient r and obtained its bias and variance up to terms of order n"^.
These expressions are given in terms of sums of powers of Xi and y^ and
sums of products of powers of Xi and yu and are quite lengthy.

In this paper we have obtained asymptotic expressions for the bias
and variance of r in terms of the moments of the finite bivariate popu
lation, from which the infinite bivariate population case follows
immediately.

In sample survey situations, many a times the information on one
variable, say x (the auxiliary variable), for all the units in the population
is available. In such situations a class of estimators of p has_been
suggested which utilize the known values of the population mean X and
the population variance of the auxiliary variable x. Asymptotic
expressions for the variance of estimators of this class and the variance
of optimum estimators of the class are obtained.

2. The Bias and Variance of r

To find the bias and variance of r, we write

= {siiSD - 1,63 = {siisD - 1

and

63 = iSayjSxv) — 1>

then

= £h) = E{.,) = 0
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and

{N-n)
K

K

l^ao

Mo4

(^02

- m)

-

(2.1)

(2.2)

E{4) =

Ei^l) =

(TV- 2)n \

{N-- n) 1
(N- 2)n "

(N-•n) ,
(N- 2)n

{N-- n)

, (N -- n(jV - » - 1) t^2ol^o2
(« - 1) ^(^-3)

{m n -Nn- 2jV' + 4iV - 2h - 2)
(« - 1) iV(iV - 3)

(2.3)

^(ei fa) =

{N - 2)n

f^ii

t'-2oi^oa

(N - n)
{N - 2)n

Ei, -m)E{^2H)- (^N-2)n I (Xoaii-u )

where

K
[J-22

K
1^31

l^20'^ll

= 7V-1 S {xi - xr {yi - Y)\
i=l

(N - \){Nn - N - n- I)
(;i - \){.N{N - 3))

and

M =
Nhi - W + 6Af - 3« - 3

(n - \)N{N - 3)

+
2(iV - 1)(N - « - 1)

(mi - 2A^/I - + 2?/ - « - 1)
(n - 1) N(N - 3)

- M)

(2.4)

(2.5)

(2.6)

The expressions in (2.1)-(2.6) could be obtained either directly or by
the method given in Kendall and Stuart [2]. The expression in (2.1) is
equivalent to the one given by Kendall and Stuart ([2], p. 326, Ex. 12.11).

From (1.2), we have

r = p(l + £3) {(1 + e,)(l -f £2)}"^ • (2.7)

Expandmg, retaining terms up to the second power of e's and taking
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expectation, we have to the first degree of approximation

E{r) = pE 1-yVa + +(t)'' +(t)
(N - n) ^ p

= P~ T
1/ [^31 I (^13 ^ ^

. 2 \ Hoafn / ^ !^2o!^02

_4Cj^+%)j (2.8)
8 ^ V-la (^02 fi

This shows that the bias of r is of the order of rr^, and hence its contri
bution to the mean square error will be of the order of Thus, up to
terms of order n'^, the expressions for the mean square error and the
variance will be same. Onwards, we derive variances up to terms of order

only.
Retaining terms up to second power of e's, we obtain the variance of r

Vir) = E{r - p)''

= p^E fa + 6i + +26163 ^—(siCj +62^
Substituting from (2.1)-(2.6), and retaining terms up to order «~S we

have

where

[^22 I _J_ ^I'-io _j_ _j_ 2t^a3
(J-ii 4 \ [x|o [Aqs P'SoH'Qa )

f (^31 _|_ ^-13 \

When N tends to infinity, K(N — n)l{N — 2) tends to unity and V(r)
is given by {p^ln)A, the asymptotic expression for V(r) in infinite popu
lations; see for example, Kendall and Stuart ([2], p.251). The expression
K(N — n)/(N —2) could therefore, be considered as the finite popula
tion correction term for variance of r.

3. A Class of Estimators of p

In sample survey situations, many a times the information on an
auxiliary variable is available. In this section we define a class of estimat
ors of p when the values of the population mean x and the population
variance S| of the variable x, are known.
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We write u = xjX and v — jS^. Whatever be the sample chosen,
let (m, v) assume values in a bounded closed convex subset, R, of the
two-dimensional real space containing the point (1, I), let t(u, v) be a
function of u and v such that

i(l, 1) = 1 (3.1)

and such that it satisfies the following conditions.

1. The function t(u, v) is continuous and bounded in R.
2. The first and second partial derivatives of t(u, v) exist and are

continuous and bounded in R.

We consider the class of estimators of p, defined by*

rt = r • t{u, v). (3.2)

To find the bias and variance of rt we will need the following expres
sions which are easily derived

£(k - 1) = 0

iN - n) [^20
= {N - l)n W ^^^

(N — n) i^ai (3.4)

£{e.(« - 1)> - (3.5)

{N--2)n Zixu

(N-•n) (J'S#

(N- 2)n

(N- n) E^is

To find the expectation and variance of n, we expand t(u, v) about the
point (1, 1) in a second-order Taylor's series, put this value and the
value of r in terms of e^, €3, 63 from (2.7) in (3.2). Expanding in powers
of 61, ^2, €3 and (m - 1) and retaining terms up to second power, we
have

E(Pt) = P + 0(n-')

which shows that the bias of n is of the order of and so up to order
the mean square error and the variance of rt are same.

♦Srlvastava and Jhajj [4], [5] defined classes of estimators of this form for popu

lation mean Yand population variance S^.
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Expanding (rt - p)^ retaining terms up to second power in ei, e^, 63
and (m —1), taking expectation and using (2.1)-(2.6) and (3.3)-(3.6),
after some algebra, we obtain

V(n) =
(AT - «)

where

B I ( 2 H21 f'la

hi f'oa

_ 1 jf 2 (A31 1^40

[^ao ' 1^11 [^20

f'iO

l^lo
,Pi =

(^30

(^20 '

KA + B 1) + KCt^ih 1)

+ ViV- 1

[^20 ).
^ _ '• 1 r3i r-40 _ t^aa j

t'-os /'

& <; (1.1)
A

+ - M) tl{\, 1) + ^ ^i(l, 1) '2(1, 1) (3.7)

and <i(l, 1) and ^2(1, 1) respectively denote the first partial derivatives
of tiu, v) at the point (1, 1).

Any parametric function t(u, v) satisfying (3.1) and the conditions (1)
and (2) can generate an estimator of the class (3.2). Four examples of
such functions t{u, v) are given in Srivastava and Jhajj [5].

The optimum values ofthe parameters in i(u, v) which minimize the
variance of r, are given by

opt. <. (1,1) = Arc - ^ W. - M)

Opt. u (1. B

and the minimum variance is given by

{N - n) P"

(/srpa - M)- PiI (3.8)

(^p2 - M) - Pi (3.9)

Mm. V{n) = j [xao ^(iV - 2)

1 {N-\) B-(N- 2)I(N - 1) KC}'
4 (N -2) {{N - 2)I{N - l)(/(:p2 -M)- Pi} J

(3.10)
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For infinite populations the expressions (3.7)-(3.10) up to terms of
order are obtained by taking limit as N tends to infinity. These are

V(?t) =
n

A + 5^,(1.1) + a, (1,1) + 1)
Jx

+(P=-I)<}(I, 1)+ -|r^<.(I,l)r.(I,I)
ZH-20

(3.11)

Opt. 1,(1, 1)
f^20

(3.12)

Opt. h(1> 1) = B-C^ /(P, - P, - 1) (3.13)

Min. V(/~t) =
4 [J.20

(A-t^ao/txin B - O"
4(13, - P, - 1)

(3.14)

It is clearly seen that if optimum values of parameters given by (3.12)
and (3.13) are used, the variance of n is not larger than that of r as the
last two terms on the r.h.s. of (3.14) are non-negative.

If we further assume that the infinite population is bivariate normal,
the above four expressions reduce to

" p."''' +2(1 - f) (1. 1) + -Sf-'! (1.1)
+ 2/1(1, 1)

Opt. t, (1, 1) = 0

Opt. tAi, 1) =- ^ (1 - p')

Min. V(rt) = (I ~p2)» 1̂- i- pa ^

(3.15)

(3.16)

(3.17)

(3.18)

The expression on the right hand side of (3.18) clearly gives the
amount by which the asymptotic variance (1 — p®)®/« of r is larger than
the variance of n with optimum values of the parameters. The relative
decrease in variance is more for larger values of p.

Two simple functions t{u, v) satisfying the required conditions arc

t{u, v) = 1 + a(w - 1) + p(v - 1) (3.19)

t{ii, v) = H" vP (3.20)
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and for both these functions /i(l, 0 = * 0 = P- Thus one
should use optimum values of a and Pin n toget the minimum variance.
However, these optimum values of a and P depend upon unknown popu
lation parameters and will not be known, so some guessed values for
optimuin values of a and p may be used.

In the case of bivariate normal population, from (3.16) optimurnvalue
of a is zero. And with this value of a, the variance of rt is

V(rt) =
(1 - P°)' - + 2p(p + 1 - P®) (3.21)

The variance ofrj at (3.21) is smaller than the variance of r for
—(I —p*) < P < 0. Thus if in the estimator rt, t{u, v) as given in
(3.19) or (3,20), is used with a = 0 and a value of p in the interval
(_(1 _ pt)^ 0), it will have a smaller variance than the variance of r.
For example this estimator r« will have a smaller variance than that of r
for P lying between —.19 and 0 if p = 0.9, for plying between —.51 and
0 if p = 0.7 and for P lying between —.75 and 0 if i^= 0.5.

At this point it may be interesting to note that if X and are knowh,
one may think that the most natural estimator for pwill be of tfie form

r' = «-» s (;c, - X)(y, - MSx, Sy).
i=l

However it is not so as r' has a variance which is not necessarily smaller
than that of r. In fact the estimator r' is a member of the class (3.2)
with t{u, v) = vi, and so ri(l, 1) = 0 and r2(l, 1) = i The asymptotic
variance of r' is

which in the case of bivariate normal population reduces to

The variance of r' thus is always larger than that of r in the case of
bivariate normal populations.

4. A Wider Class of Estimators

In this section we consider a class of estimators of p wider than (3.2)
defined by

ft = gif, u, v).

+ + -j(^P, - M)

(4.1)
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where g(r, u, v) is a function of r, u and v such that

^(p, 1. 1) = p.

Proceeding as in section 3 it is easily seen that the bias of r, is of the
order and up to this order of terms the variance of Pg is minimized
for the following optimum values.

Opt. g^ip, 1, 1) = -|-

and

Opt. ^3(p, 1, 1) = y

KC ~
f'SO

OT. - mB }/{(^)
-M)- p,}

(^20

(irpa - M) - p,

where gi{p, i, 1) and g'aCp, 1, 1) respectively denote the first partial
derivatives of g{r, u, v) with respect to u and v at the point (p, 1, 1).
The minimum variance of is equal to the minimum variance of as
given by (3.10). Thus it is seen that the asymptotic variance for an
optimum estimator of class (4.1) is the sameas the asymptotic variance
for an optimum estimator of class (3.2) and is not reduced.

For the case of bivariate noFmal population the optimum values of
g2(p, 1, 1) and ^3(p, I, 1) reduce to

Opt. g^{p, 1, 1) = 0 (4.2)

and

Optg,{p, 1, 1)= - |~(1 - p«) (4.3)

and the minimum variance of rg is given by (3.18).
An estimator of p of the class (3.2). with t (u, v) as given in (3.19) with

optimum values of ^1(1, 1)and ^2(1, 1) for bivariate normal populations
is given by

„2

n = r

This estimator ri involves p which is unknown. If we replace p by r in
Tj, it reduces to
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The estimator so obtained is a member of the class (4.1) and satisfies
the conditions (4.1) and (4.3), and hence is an optimum estimator ofthe
class with asymptotic variance equal to (3.18). _

The maximum likelihood estimator of pwhen Xand are known is
given by

-i
? = r (1 - r») ^ + r

which too is a member of the class (4.1) and satisfies conditions (4.2)
and (4.3). Hence pis also an optimum estimator of the class (4.1) with
the same asymptotic variance.
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