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SUMMARY

Gupta, Singh and Lal [1] have studied the bias and variance of the sample correl-
ation coefficient » based on a simple random sample from a finite population.
They obtained asymptotic expressions for bias and variance of rin terms of sums
of powers of the two variables and sums of their products. In this paper asymp-
totic bias and asymptotic variance of r are obtained in simple expressions involv-
ing bivariate moments of the finite population. A class of estimators of the
population correlation coefficient is suggested when information about the popu-
lation mean and population variance of one of the variables is available,
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Introductioﬁ , -

The correlation coefficient ¢ for a finite population of N units with
variate values (xi, ), i = 1, ..., N is defined by
P = Su/(Ss - Sy) (L.

where

N — —
Szy = (N — 1) ,E] (i — X)(yi — Y)
Je=

2 N _ N _
Sg =(N— 1) '21 (xi —X)%, 80 = (N — 1) ‘}:1 i — 7)e
= j=
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and X and Y denote the population means of the variates x and y
respectively.

Based on a simple random sample of size n, (x;, y;), i =1, .. ., n, the
conventional estimator of p is the corresponding sample correlation
coefficient

F = ng/(Sz . Sy) (12)

where
n .
Sag = (n — 1)1 _21 (xy — X — P,
1=

n n
sy = (n— 1) '21()“ — X5y = (n— 1 I e— R
i=

i=

n n
X=n'ZE xandp=nt T y.

1= =

Recently Gupta, Singh and Lal [1] studied the sample correlation
coefficient r and obtained its bias and variance up to terms of order n-1.
These expressions are given in terms of sums of powers of x; and y, and
sums of products of powers of x; and yi, and are quite lengthy.

In this paper we have obtained asymptotic expressions for the bias
and variance of r in terms of the moments of the finite bivariate popu-
lation, from which the infinite bivariate population case follows
immediately.

In sample survey situations, many a times the information on one
variable, say x (the auxiliary variable), for all the units in the population
is available. In such situations a class of estimators of p has been
suggested which utilize the known values of the population mean X and
the population variance SZ of the auxiliary variable x. Asymptotic
expressions for the variance of estimators of this class and the variance
of optimum estimators of the class are obtained.

2. The Bias and Variance of r
To find the bias and variance of r, we write
€ = (53/S3) — 1, & = (5}[S}) — 1
and
€; = (Soy/Say) — 1,
then
E(e;) = E(&:) = E(e;) =0
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and
_ _W—=m (p o _
B = =g (K M) @D
2\ — (N _ n) Froq .
E(e3) = W =2m (K . M) (2.2)

_ _WN—=mn Pog (N — 1)(N —n—1) taolho
B = G K o+ SRy o
(N2n — Nn— 2N?+ 4N —2n — 2)
- o —1) NV — 3) }(2'3)

_ (N—n) Uy 2AN—-1DWN—n—1)
B &) = (N2 Ko+ SV =)
el (N”n—2Nn—N’_+2N—n—-l)}
Haglroa (n — 1) NN — 3)
(2.4)
_ (N—n) Ba1
E(el 63) o (N - 2)”’ (K “’20;:11 M ) (2.5)
. (N —n) WUy _
Eler &) = (N— 2)n (K 902:11 M ) (2'»6)
where

n _ —
pap = N1 Z (xs — X)* (0 — Yo,

i=1

_ (N—DWNn—=N—n=1

K o — DNV — 3))
and
M= N2y —3N2 4+ 6N —3n—3
- (n — 1) N(N — 3)

The expressions in (2.1)-(2.6) could be obtained either directly or by
the method given in Kendall and Stuart [2]. The expression in (2.1) is
equivalent to the one given by Kendall and Stuart ([2], p. 326, Ex. 12.11).

From (1.2), we have
= p(1 + &) {(1 + €)1 + )} - Q2.7

Expanding, retaining terms up to the second power of €’s and taking
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expectation, we have to the first degree of approximation

1 1 1 3 3
E(r)=pE{l - 76163— E 52€3+ TEIGZ + (—8—‘)6§+(—§")€:}
_ (N —n) i {i( Yeag P13 ) _ __1__ Foa
(N - 2) n L2\ HPaltnn Moattyy 4 paglhon
3 ( Pq0 Hog )} (
— 2.8
K} wy + wde )

This shows that the bias of r is of the order of #7%, and hence its contri-
bution to the mean square error will be of the order of n~2. Thus, up to
terms of order n~, the expressions for the mean square error and the
variance will be same. Onwards, we derive variances up to terms of order
n~1 only.

Retaining terms up to second power of €’s, we obtain the variance of ¥

V(r) = E(F — p)
= PBE{ € + —‘11‘( el + € 4 26.e ) — (&6 + 52€3)}

Substituting from (2.1)-(2.6), and retaining terms up to order n7%, we
have

—n g0
V({r) = (N 2 K ” A 2.9)
where
o Moz 2] _Poa 2¢g, )
4 wh 4 ( 3o + e j;wl’-zol’*uz

_( [0 + P1g )
Pe11lra0 P11l

When N tends te infinity, K(N — n)/(N — 2) tends to unity and V(r)
is given by (¢%/n)4, the asymptotic expression for V(r) in infinite popu-
lations; see for example, Kendall and Stuart ([2], p.251). The expression
K(N — n)[(N — 2) could therefore, be considered as the finite popula-
tion correction term for variance of r.

3. A Class of Estimators of p

In sample survey situations, many a times the information on an
auxiliary variable is available. In this section we define a class of estimat-
ors of p when the values of the population mean X and the population
variance S2 of the variable x, are known.
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We write u = X/X and v = s2 /SZ. Whatever be the sample chosen,
let (u, v) assume values in a bounded closed convex subset, R, of the
two-dimensional real space containing the point (1, 1), let ¢(u, v) be a
function of ¥ and v such that

(1, =1 (3.1)
and such that it satisfies the following conditions.

1. ‘The function ¢(u, v) is continuous and bounded in R.
2. The first and second partial derivatives of f(u, v) exist and are
continuous and bounded in R.

We consider the class of estimators of p, defined by*
rn=r- t(u, v). (3.2)

To find the bias and variance of r; we will need the following expres-
sions which are easily derived

Eu—1)=0

E(w — 1) = H —% (3.3)
Elan = D} = (= (3.4
Eley(u — 1)} = ((jvv =5 F (3.5)
B — 1)} = Ex - ;gn )%‘;2 (3.6)

To find the expectation and variance of 71, we expand #(u, v) about the
point (1, 1) in a second-order Taylor’s series, put this value and the
value of r in terms of €,, €,, €; from (2.7) in (3.2). Expanding in powers
of €, €, ¢; and (¥ — 1) and retaining terms up to second power, we

have
E() = e + 0(n™)
which shows that the bias of r¢is of the order of #n*and so up to order

n~! the mean square error and the variance of r, are same.

*Srivastava and Jhajj [4], [5] defined classes of estimators of this form for popu-
lation mean Y and population variance Sf,, ’
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Expanding (;"c — p)?, retaining terms up to second power in €, €, €
and (u — 1), taking expectation and usipg (2.1)-(2.6) and (3.3)-(3.6),
after some algebra, we obtain

"—_(I_V—:"—)——p—z—{ Bt.(1, 1) + KCt,(1, 1
VR = Gy ~ a (KA T Bl D+ Ko, )
/ N—2\Fp 2
B — LD + 2250, D60, | 6D
Xz .
where
B = _1_(_2_11-&__—& _ U-so)
f l"‘]l Pon Hag ?
C— __1_(19_31_ _ o _@_)
a0 P11 K20 tos /°
_ Pau g b
32 #220331 Hgo’

and #,(1, 1) and #,(1, 1) respectively denote the first partial derivatives
of t(u, v) at the point (1, 1). )
Any parametric function 1(u, v) satisfying (3.1) and the conditions (1)
and (2) can generate an estimator of the class (3.2). Four examples of
such functions #(u, v) are given in Srivastava and Jhajj [5].
The optimum values of the parameters in #(x, v) which minimize the
variance of 17, are given by

Opt. #; (1, 1) = %{% KC — f:o (KBy — M) Bg/{(%—:—%)

1

(KB — M) — 61} (3.8)

_ 1 [ Xua N—Z) }/(N——Z)
Opt. (1, ) = {42 5 (§=1)«xc (7=

(KBs — M) — al} (3.9)

and the minimum variance is given by

in ) = (=5 5w - H{F=7) i &
1 (N — 1) {Xugeludo B — (V — 2)I(N —1) Kc}i]
4 (N =2 (W —2)(N— D(Kp — M) — B}
) (3.10)
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For infinite populations the expressions (3.7)-(3.10) up to terms of
order n~! are obtained by taking limit as N tends to infinity, These are

KGo = L] 4+ B + cnan + 2 g

- 2 —2:’-30
FE-nan Y+ 2, 1)} (3.11)

Y Y2
opt.n () =3 {2 € == X plfe, 5, - 1)

(3.12)

Opt. 1, (1, 1) = %(,Yg“a" B—C )/(e2 —8 —1 (3.13)

2
20

- o % Xisalpd B — C)?
Min. V() = PT{A — i (’ifé‘ga/‘i-oﬁf’_ IC)) } (3.14)

It is clearly seen that if optimum values of parameters given by (3.12)
and (3.13) are used, the variance of r: is not larger than that of » as the

last two terms on the r.h.s. of (3.14) are non-negative.

If we further assume that the infinite population is bivariate normal,
the above four expressions reduce to

~ 2 — 532
PGy = LS a0 — a0 4

+ 2k (1, 1)} (3.15)

Opt. £, (1, 1) = 0 (3.16)
Opt. £, (1, 1) = — 71 (1 -—-e9 (3.17)
Min. V() = }1— (1 — g2 (1 _ ZL p“) (3.18)

The expression on the right hand side of (3.18) clearly gives the
amount by which the asymptotic variance (1 — ¢*)%/n of r is larger than

the variance of ¢ with optimum values of the parameters. The relative
decrease in variance is more for larger values of p.

Two simple functions #(u, v) satisfying the required conditions are

i, v) =1+ aw—1) 4 p(y—1) (3.19)

t(u, v) = u* v8 (3.20)
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and for both these functions #(1, 1) = o and t(1, 1) = B. Thus one .
should use optimum values of « and B in T to get the minimum varlance
However, these optimum values of « and B depend upon unknown‘popu-
lation parameters and will not be known, so some guessed values for
optimum values of « and § may be used.

In the case of bivariate normal population, from (3. 16) optimum value
of « is zero. And with this value of «, the variance of r; is

V(r) = L;—Pz)’- + 286 + 1 — ¢ —f— @29

‘The varial(lce of 1 at (3.21) is smaller than the variance of r for
—(1 — p?) < B < 0. Thus if in the estimator T, #(u, v) as given in’
(3.19) or (3.20), is used with &« = 0 and a value of B in the interval
(—(1 — ¢%, 0), it will have a smaller variance than the variance of r.
For example this estimator re will have a smaller variance than that of r
for B lying between —.19 and 0 if p = 0.9, for B lying between —.51 and
Qif p = 07 and for 8 1y1ng between —75and 0 1fp = 0 5.

one may think that the most natural estimator for p will be of the fdrﬁi
. n _
r'=nl _21 (x; — X)) — 9)/(Ses ).
=

However it is not so as r’ has a variance which is not necessarily smaller
than that of . In fact the estimator r’ is a member of the class (3.2)

with 7(u, v) = v#, and so £,(1, 1) = O and 1,(1, 1) = }. The asymptotic
variance of r' is

r (N WN—n _E’—{ 1 1 _ }
which in the case of bivariate normal population reduces to

rey =L (3 )&

n

The variance of r* thus is always larger than that of r in the case of
bivariate normal populations.

4. A Wider Class of Estimators

In this section we consider a class of estimators of p wider than (3.2)
defined by

F = g, u, V), | (4.1)
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where g(r, u, V) is a function of r, uand v such that

gle, 1, 1) =o.

Proceeding as in section 3 it is easily seen that the bias of ;, is of the -

order n~* and up to this order of terms the variance of r, is minimized
for the following optimum values.

> [ X x (( N —2

_(Kﬁz"‘M)“‘ﬁl}
and | | " -
| 'Opt-ga(p,»l,l):%{%;:oB“(x )KC}H(JQ’T:?)

(e, — 1) - 0.}

where g,(e, 1, l) and gy(p, 1, 1) respectively denote the first partial
derivatives of g(r, u, v) w1th respect to # and v at the point (e, 1 1).
The minimum variance of r. ro is equal to the minimum variance of 7, as
given by (3.10). Thus it is seen that the asymptotic variance for an
optimum estimator of class (4.1) is the same as the asymptotic” variance
for an optimum estimator of class (3.2) and is not reduced.

" For the case of bivariate ‘normal populatlon the optimum values of
&:(p, 1, 1) and g,(p, 1, 1) reduce to :

Opt. gy(p, 1, 1) = 0 | o 4.2)
and

Opt. &ale, L =— £ —¢)  (@43)

and the minimum variance of r, is given by (3.18).

An estimator of p of the class (3.2). with 7 (u, v) as given in (3.19) with
optimum values of #,(1, 1) and #(1, 1) for bivariate normal populations
"-is given by -

i daom(E )

This estimator r1 involves p whlch is unknown If we replace p by r in
rl, it reduces to

{1 dma(F )
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The estimator r'; so obtained is a member of the class (4.1) and satisfies
the conditions (4.1) and (4.3), and hence is an optimum estimator of the
class with asymptotic variance equal to (3.18).

The maximum likelihood estimator of ¢ when X and S2 are known is
given by

A 2 )
p=r{(1—-r’) ;.’2 +r2}§ _

which too is a mel}lber of the class (4.1) and satisfies conditions 4.2

and (4.3). Hence p is also an optimum estimator of the class (4.1) with
the same asymptotic variance.
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